- 4. Kuptsov L.P. (1996) Rossii'skie matematicheskie olimpiady' shkolnikov: kniga dlya uchashihsya [Russian Mathematical Olympiads for Schoolchildren: A Book for Students] / L.P. Kuptsov, S.V. Reznichenko, D.A. Teryoshin; pod red. chl.-corr. RAO G.N. Yakovleva. Rostov-na-Donu: Fenix. 640 p.
- 5. Kurosh A.G. (2004) Kurs vy'sshei' algebry' [The course of higher algebra]/ A.G. Kurosh. Sanct. Peterburg: Lan. 13-e izd. 432 p.
- 6. Kuschenko V.S. (1996) Sbornik konkursny'h zadach po matematike [Compilation of competitive tasks in mathematics]. L.: Sudostroenie. 3-e izd. 591 p.
- 7. Lidsky V.B., Ovsyannikov L.V., Tulajkov A.I., Shabunin M.I. (1962) Zadachi po elementarnoi' matematike [Problems in elementary mathematics]. M.: Fizmatlit. 416 p.
- 8. Shabunin M.I. (2006) Matematika dlya postypayushih v vuzy': posobie [Mathematics for students entering universities: course book]. Moskva: Binom, 2006. 443 p.
- 9. Sivashinsky' I.Kh. (1968) Zadachi po matematike dlya vneklassny'h zanyatii' [Problems in mathematics for extracurricular activities] M.: Prosvesshenie, 1968. 312 p.
- 10. Tsy'pkin A.G. Pinsky A.I. (1989) Spravochnik po metodam resheniya zadach po matematike dlya srednei' shkoly' [Handbook on methods of solving problems in mathematics for secondary school]. 2-e izd. M.: Nauka. 576 p.
- 11. Volotov N.N. (2016) Tehnologiya uprosshenia sum slozhny'h kubitcheskih radikalov [Technologies for Simplifying the Sum of Complex Cubic Radicals/ N.N. Volotov // Materials of the regional scientific conference of young scientists "Current problems of natural sciences and their teaching": Lipetsk, October 20-21, 2016] Materialy' oblastnoi' nauchnoi' konferentsii molody'h ucheny'h "Aktualny'eproblemy' estestvenny'hnauk i ihprepodavaniya": Lipetsk, 20-21 oktyabrya 2016. Lipetsk: LGPU imeni P.P. Semenova-Tyan-Shanskogo. P. 45-54.

УДК 517.956

СМЕШАННАЯ ЗАДАЧА ДЛЯ ОДНОЙ СИСТЕМЫ ПОЛУЛИНЕЙНЫХ ГИПЕРБОЛИЧЕСКИХ УРАВНЕНИЙ С ЗАПОМИНАЮЩИМИ ОПЕРАТОРАМИ

Исаева Севда Эльхан кызы

к.ф.-м.н., доцент isayevasevda@rambler.ru г. Баку (Азербайджан) Бакинский Государственный Университет (Баку, Азербайджан)

Резюме. В данной работе рассматривается смешанная задача одной системы полулинейных гиперболических уравнений с запоминающими операторами. Доказаны теоремы о существовании и единственности решений рассматриваемой задачи.

Ключевые слова. Полулинейное гиперболическое уравнение, гистерезис, запоминающий оператор, метод дискретизации по времени.

1. Введение

Исследованию решений дифференциальных уравнений с частными производными с гистерезисными нелинейностями, в частности с нелинейными запоминающими операторами, посвящены работы, например, [1] - [5]. В данной работе рассмотрена нижеуказанная смешанная задача для системы полулинейных гиперболических уравнений с запоминающими операторами и доказаны теоремы о существовании и единственности решений для этой задачи. Пусть $\Omega \subset R^N(N \ge 1)$

ограниченная область с достаточно гладкой границей Γ . В области $Q = \Omega \times (0,T)$ рассмотрим систему полулинейных гиперболических уравнений

$$\begin{cases}
\frac{\partial^{2} u}{\partial t^{2}} + \frac{\partial}{\partial t} \left[u + \mathsf{F}_{1}(\upsilon) \right] - \Delta u = f_{1}, \\
\frac{\partial^{2} \upsilon}{\partial t^{2}} + \frac{\partial}{\partial t} \left[\upsilon + \mathsf{F}_{2}(u) \right] - \Delta \upsilon = f_{2}
\end{cases} \tag{1}$$

с граничными условиями:

$$u = 0, \ \upsilon = 0, \ (x, t) \in \Gamma \times [0, T]$$
 (2)

и с начальными условиями:

$$\left[u + \mathsf{F}_{1}(\upsilon) \right] \Big|_{t=0} = u^{(0)} + w_{1}^{(0)}, \, \frac{\partial u}{\partial t} \Big|_{t=0} = u^{(1)},$$
 (3)

$$[\upsilon + \mathsf{F}_{2}(u)]|_{t=0} = \upsilon^{(0)} + w_{2}^{(0)}, \ \frac{\partial \upsilon}{\partial t}|_{t=0} = \upsilon^{(1)},$$
 (4)

где нелинейные операторы F_1 , F_2 действуют из пространства $\mathsf{M}\big(\Omega;C^0([0,T])\big)$ в $\mathsf{M}\big(\Omega;C^0([0,T])\big)$. Здесь $\mathsf{M}\big(\Omega;C^0([0,T])\big)$ есть пространство измеримых функций, действующих из Ω в $C^0([0,T])$. Предполагается, что операторы F_i (i=1,2) являются запоминающими операторами, которые действуют в каждой точке $x\in\Omega$ независимо, то есть $[\mathsf{F}_i(u(x,\cdot))](t)$ зависит от $u(x,\cdot)_{[0,t]}$ и не зависит от $u(y,\cdot)_{[0,t]}$ для $y\neq x$.

Пусть операторы F_i (i=1,2) удовлетворяют следующим условиям:

$$\begin{cases} \text{если для любых } \upsilon_1, \ \upsilon_2 \in \mathbf{M}\Big(\Omega; C^0([0,T])\Big)$$
 и для любого $t \in [0,T]$ $\begin{cases} \upsilon_1 = \upsilon_2 \text{ на } [0,t], \text{то } [\mathsf{F}_i(\upsilon_1)](\cdot,t) = [\mathsf{F}_i(\upsilon_2)](\cdot,t) \end{cases}$ п.в. в $\Omega;$

$$\begin{cases} \text{если } \upsilon_{\mathbf{n}} \in \mathbf{M} \Big(\Omega; C^{0} \big([0, T] \big) \Big) \text{ и } \upsilon_{\mathbf{n}} \to \upsilon \text{ равномерно,} \\ \text{то } \mathsf{F}_{i} \big(\upsilon_{n} \big) \to \mathsf{F}_{i} \big(\upsilon \big) \text{равномерно на } \big[0, T \big], \text{ п.в. в } \Omega; \end{cases}$$

$$\begin{cases} \text{существуют такие } L > 0, \ g \in L^2(\Omega), \text{ что для любого } \upsilon \in M\left(\Omega; C^0([0,T])\right) \\ \| [\mathsf{F}_i(\upsilon)](x,\cdot) \|_{C^0([0,T])} \leq L \| \upsilon(x,\cdot) \|_{C^0([0,T])} + g(x), \text{ п.в. в } \Omega; \end{cases}$$

$$\begin{cases} \text{если } \upsilon \in M\left(\Omega; C^{0}([0,T])\right) \text{ и для любого } [t_{1},t_{2}] \subset [0,T] \\ \upsilon(x,\cdot) \text{ является } \text{ аффинной в } [t_{1},t_{2}], \text{ п.в. в } \Omega, \\ \text{то } \{ [\mathsf{F}_{i}(\upsilon)](x,t_{2}) - [\mathsf{F}_{i}(\upsilon)](x,t_{1}) \} [\upsilon(x,t_{2}) - \upsilon(x,t_{1})] \geq 0, \text{ п.в. в } \Omega; \end{cases}$$

$$(8)$$

$$\begin{cases} \text{существует такое } 0 < L_1 < 1/2, \text{ что для любого } \upsilon \in M\left(\Omega; C^0([0,T])\right) \text{ и для} \\ \forall \left[t_1, t_2\right] \subset [0,T], \text{ если } \upsilon(x,\cdot) \text{ является аффинной в } \left[t_1, t_2\right] \text{ п.в. в } \Omega, \text{ то} \\ |\left[\mathsf{F}_i(\upsilon)\right](x, t_2) - \left[\mathsf{F}_i(\upsilon)\right](x, t_1) \leq L_1 |\upsilon(x, t_2) - \upsilon(x, t_1)| \text{ п.в. в } \Omega \end{cases}. \end{cases}$$

Предполагается, что

$$u^{(0)} \in H_0^1(\Omega), w_1^{(0)} \in L^2(\Omega), u^{(1)} \in L^2(\Omega), f_1 \in L^2(Q),$$
 (10)

$$v^{(0)} \in H_0^1(\Omega), \ w_2^{(0)} \in L^2(\Omega), \ v^{(1)} \in L^2(\Omega), \ f_2 \in L^2(Q). \tag{11}$$

Определение. Пара функций (u, v) такая, что при

 $u, \upsilon \in L^2(0,T; H^1_0(\Omega)) \cap H^1(0,T; L^2(\Omega))$ удовлетворяются включения

 $\mathsf{F_1}(\upsilon) \in L^2(Q)$, $\mathsf{F_2}(u) \in L^2(Q)$ и которая удовлетворяет равенствам

$$\iint_{Q} \left\{ -\frac{\partial u}{\partial t} \cdot \frac{\partial \overline{\upsilon}}{\partial t} - \left[u + \mathsf{F}_{1}(\upsilon) \right] \frac{\partial \overline{\upsilon}}{\partial t} + \nabla u \cdot \nabla \overline{\upsilon} \right\} dxdt =$$

$$= \iint_{Q} f_{1} \overline{\upsilon} dxdt + \iint_{\Omega} \left[u^{(0)}(x) + w_{1}^{(0)}(x) + u^{(1)}(x) \right] \overline{\upsilon}(x,0) dx, \tag{12}$$

$$\iint_{Q} \left\{ -\frac{\partial \upsilon}{\partial t} \cdot \frac{\partial \overline{\upsilon}}{\partial t} - \left[\upsilon + \mathsf{F}_{1}(u)\right] \frac{\partial \overline{\upsilon}}{\partial t} + \nabla \upsilon \cdot \nabla \overline{\upsilon} \right\} dxdt =$$

$$= \iint_{Q} f_{2} \overline{\upsilon} dxdt + \int_{\Omega} \left[\upsilon^{(0)}(x) + w_{2}^{(0)}(x) + \upsilon^{(1)}(x)\right] \overline{\upsilon}(x,0) dx, \tag{13}$$

для любого $\overline{\upsilon}\in L^2\!\left(\!0,T;H^1_0\!\left(\Omega\right)\!\right)\!\!\cap H^1\!\left(\!0,T;L^2\!\left(\Omega\right)\!\right)\left(\overline{\upsilon}\!\left(\cdot,T\right)\!=0$ п.в. в Ω), называется решением задачи (1)-(4).

Теорема 1. Пусть выполняются условия (5)-(11). Тогда задача (1)-(4) имеет по крайней мере одно решение (u, v), для которого имеет место

$$u, \upsilon \in W^{1,\infty}(0,T;L^2(\Omega)) \cap L^{\infty}(0,T;H_0^1(\Omega)), \quad \mathsf{F}_1(\upsilon),\mathsf{F}_2(u) \in H^1(0,T;L^2(\Omega)). \tag{14}$$

Эта теорема доказывается методом дискретизации по переменному t (см.[6]).

Разобъем отрезок [0,T] точками $t_n = nk$, n = 0,1,...,m на m частей. Примем следующие обозначения:

$$\begin{split} f_{1m}^n &= f_1\big(x,nk\big), \ f_{2m}^n = f_2\big(x,nk\big), \ n = 1,\dots,m, \\ u_m^0 &= u^{(0)}, \ w_{1m}^0 = w_1^{(0)}, u_m^1 = u^{(0)} + ku^{(1)}, u_m^{-1} = u^{(0)} - ku^{(1)}, \\ u_m^n\big(x\big) &= u\big(x,nk\big), \quad n = 2,\dots,m, \\ v_m^0 &= v^{(0)}, \ w_{2m}^0 = w_2^{(0)}, v_m^1 = v^{(0)} + kv^{(1)}, v_m^{-1} = v^{(0)} - kv^{(1)}, \\ v_m^n\big(x\big) &= v\big(x,nk\big), \quad n = 2,\dots,m, \\ w_{1m}^n\big(x\big) &= \big[\mathsf{F}_1\big(v_m\big)\big]\!\big(x,nk\big), \ w_{2m}^n\big(x\big) &= \big[\mathsf{F}_2\big(u_m\big)\big]\!\big(x,nk\big), n = 1,\dots,m, \ \text{ Π.B. B } \Omega\,, \end{split}$$

 $u_m(x,\cdot)$ = линейная интерполяция по времени u(x,nk),

 $\upsilon_m(x,\cdot)$ =линейная интерполяция по времени $\upsilon(x,nk)$

для n = 0,1,...,m п.в. в Ω .

Аналогичным образом определяем $w_{1m}(x,\cdot), w_{2m}(x,\cdot)$. Рассмотрим задачу

$$\frac{u_m^n - 2u_m^{n-1} + u_m^{n-2}}{k^2} + \frac{u_m^n - u_m^{n-1}}{k} + \frac{w_{lm}^n - w_{lm}^{n-1}}{k} - \Delta u_m^n = f_{lm}^n$$
 (15)

$$\frac{\upsilon_m^n - 2\upsilon_m^{n-1} + \upsilon_m^{n-2}}{k^2} + \frac{\upsilon_m^n - \upsilon_m^{n-1}}{k} + \frac{w_{2m}^n - w_{2m}^{n-1}}{k} - \Delta\upsilon_m^n = f_{2m}^n$$
 (16)

B
$$(H_0^1(\Omega))'$$
, $n = 1, 2, ..., m$,

$$u_m^0 = u^{(0)}, \ w_{1m}^0 = w_1^{(0)}, u_m^1 = u^{(0)} + ku^{(1)}, u_m^{-1} = u^{(0)} - ku^{(1)},$$

$$\upsilon_m^0 = \upsilon^{(0)}, \ w_{2m}^0 = w_2^{(0)}, \upsilon_m^1 = \upsilon^{(0)} + k\upsilon^{(1)}, \upsilon_m^{-1} = \upsilon^{(0)} - k\upsilon^{(1)}$$

Действуя аналогичным образом, как это сделано в работе [6], доказывается, что эта задача может быть решена шаг за шагом.

Умножая обе части равенств (15) и (16) на $u_m^n - u_m^{n-1}$ и $\upsilon_m^n - \upsilon_m^{n-1}$, соответственно, суммируя по $n=1,2,...,\ell$ для любого $\ell \in \{1,2,...,m\}$ и интегрируя по Ω , получим

$$\begin{split} &\sum_{n=1}^{\ell} \int_{\Omega} \left(\frac{u_{m}^{n} - u_{m}^{n-1}}{k} - \frac{u_{m}^{n-1} - u_{m}^{n-2}}{k} \right) \frac{u_{m}^{n} - u_{m}^{n-1}}{k} dx + \\ &+ k \sum_{n=1}^{\ell} \int_{\Omega} \left(\frac{u_{m}^{n} - u_{m}^{n-1}}{k} \right)^{2} dx + \frac{1}{k} \sum_{n=1}^{\ell} \int_{\Omega} \left(w_{1m}^{n} - w_{1m}^{n-1} \right) \left(u_{m}^{n} - u_{m}^{n-1} \right) dx + \\ &+ \sum_{n=1}^{\ell} \int_{\Omega} \nabla u_{m}^{n} \left(\nabla u_{m}^{n} - \nabla u_{m}^{n-1} \right) dx = \sum_{n=1}^{\ell} \int_{\Omega} f_{1} \left(u_{m}^{n} - u_{m}^{n-1} \right) dx + , \\ &\sum_{n=1}^{\ell} \int_{\Omega} \left(\frac{\upsilon_{m}^{n} - \upsilon_{m}^{n-1}}{k} - \frac{\upsilon_{m}^{n-1} - \upsilon_{m}^{n-2}}{k} \right) \frac{\upsilon_{m}^{n} - \upsilon_{m}^{n-1}}{k} dx + \\ &+ k \sum_{n=1}^{\ell} \int_{\Omega} \left(\frac{\upsilon_{m}^{n} - \upsilon_{m}^{n-1}}{k} \right)^{2} dx + \frac{1}{k} \sum_{n=1}^{\ell} \int_{\Omega} \left(w_{2m}^{n} - w_{2m}^{n-1} \right) \left(\upsilon_{m}^{n} - \upsilon_{m}^{n-1} \right) dx + \\ &+ \sum_{n=1}^{\ell} \int_{\Omega} \nabla \upsilon_{m}^{n} \left(\nabla \upsilon_{m}^{n} - \nabla \upsilon_{m}^{n-1} \right) dx = \sum_{n=1}^{\ell} \int_{\Omega} f_{2} \left(\upsilon_{m}^{n} - \upsilon_{m}^{n-1} \right) dx. \end{split}$$

откуда используя (5)–(11) имеем оценку

$$k \sum_{n=1}^{m} \left\| \frac{u_{m}^{n} - u_{m}^{n-1}}{k} \right\|_{L^{2}(\Omega)}^{2}, k \sum_{n=1}^{m} \left\| \frac{v_{m}^{n} - v_{m}^{n-1}}{k} \right\|_{L^{2}(\Omega)}^{2}, \max_{n=1,\dots,m} \left\{ \left\| u_{m}^{n} \right\|_{H_{0}^{1}(\Omega)}, \left\| v_{m}^{n} \right\|_{H_{0}^{1}(\Omega)} \right\} \leq C,$$

(постоянная C не зависит от m), с помощью которой, можно перейти к пределу в уравнениях

$$\frac{\partial^2 u_m}{\partial t^2} + \frac{\partial}{\partial t} (u_m + w_{1m}) - \Delta \widetilde{u}_m = \widetilde{f}_{1m} \times \frac{\partial^2 v_m}{\partial t^2} + \frac{\partial}{\partial t} (v_m + w_{2m}) - \Delta \widetilde{v}_m = \widetilde{f}_{2m} ,$$

которые получаются из (15), (16) с помощью обозначений:

 $\widetilde{u}_m(x,t) = u_m^n(x)$ и $\widetilde{\upsilon}_m(x,t) = \upsilon_m^n(x)$ п.в. в Ω , если $(n-1)k < t \le nk$, n=1,2,...,m; $(\widetilde{w}_{1m},\widetilde{w}_{2m},\widetilde{f}_{1m},\widetilde{f}_{2m})$ определяются аналогичным образом); после чего получаются (12)-(14).

Теорема 2. Пусть выполняются условия теоремы 1, и условия

для любого
$$r > 0$$
 существует такое $L_{2i}(r) > 0$, что

для $\forall t \in (0,T]$ и $\forall u, v \in \left\{ \widetilde{u} \in L^2(Q_t) : \|\widetilde{u}\|_{L^2(Q_t)} \le r \right\}$ і $i = 1,2$

$$\|\mathsf{F}_i(u) - \mathsf{F}_i(v)\|_{L^2(\Omega; C^0([0,t]))} \le L_{2i}(r) \|u - v\|_{L^2(\Omega; L^2([0,t]))}$$
 п.в. в Ω ,

Тогда решение задачи (1)-(4) единственно.

Доказательство. Пусть (u_1, v_1) и (u_2, v_2) два решения задачи (1)-(4). Тогда для пары разностей $(\theta_1, \theta_2) = (u_1 - u_2, v_1 - v_2)$ имеем:

$$\theta_{1tt} + \theta_{1t} + [F_1(v_1) - F_1(v_2)]_t - \Delta \theta_1 = 0, \tag{18}$$

$$\theta_{2tt} + \theta_{2t} + [F_2(u_1) - F_2(u_2)]_t - \Delta\theta_2 = 0, \tag{19}$$

$$\theta_i|_{\Gamma} = 0, \ i = 1,2,$$

$$\begin{aligned} &\theta_{i}|_{t=0}=0, \theta_{i_{t}}|_{t=0}=0, \ \left[F_{1}(\upsilon_{1})-F_{1}(\upsilon_{2})\right]_{t=0}=0, \left[F_{2}(u_{1})-F_{2}(u_{2})\right]_{t=0}=0, \\ &\theta_{i}\in L^{\infty}\left(0,T; H_{0}^{1}(\Omega)\right), \ \theta_{i_{t}}\in L^{\infty}\left(0,T; L^{2}(\Omega)\right), \ i=1,2. \end{aligned}$$

Для доказательства того, что $\theta_1 = 0, \theta_2 = 0$, используем классическую процедуру, применяемую в теории линейных гиперболических уравнений (см. [7]).

Пусть $s \in]0,T[$. Для i = 1,2 положим

$$\psi_i(t) = \begin{cases} -\int_t^s \theta_i(\sigma) d\sigma, & t \leq s; \\ 0, & t > s, \end{cases} \quad \widetilde{\theta}_i(t) = \int_0^t \theta_i(\sigma) d\sigma.$$

Отсюда ясно, что $\psi_i(t) = \widetilde{\theta}_i(t) - \widetilde{\theta}_i(s)$ при $t \le s$ (i = 1, 2). Умножая скалярно (18) на $\psi_1(t)$ и (19) на $\psi_2(t)$ и учитывая, что $\psi_{i_t} = \theta_i$, $\psi_i(0) = -\widetilde{\theta}_i(s)$, i = 1, 2 , имеем

$$\frac{1}{2} \|\theta_1(s)\|_{L^2(\Omega)}^2 + \int_0^s \|\theta_1\|_{L^2(\Omega)}^2 dt + \frac{1}{2} \|\widetilde{\theta}_{1x}(s)\|_{L^2(\Omega)}^2 = -\int_0^s (F_1(\upsilon_1) - F_1(\upsilon_2), \psi_{1_t}) dt,$$

$$\frac{1}{2} \|\theta_2(s)\|_{L^2(\Omega)}^2 + \int_0^s \|\theta_2\|_{L^2(\Omega)}^2 dt + \frac{1}{2} \|\widetilde{\theta}_{2x}(s)\|_{L^2(\Omega)}^2 = -\int_0^s (F_2(u_1) - F_2(u_2), \psi_{2t}) dt,$$

где применяя неравенство Гельдера и условие (17), получим

$$\frac{1}{2} \|\theta_{1}(s)\|_{L^{2}(\Omega)}^{2} + \frac{1}{2} \|\theta_{2}(s)\|_{L^{2}(\Omega)}^{2} + \int_{0}^{s} \|\theta_{1}\|_{L^{2}(\Omega)}^{2} dt + \int_{0}^{s} \|\theta_{2}\|_{L^{2}(\Omega)}^{2} + \frac{1}{2} \|\widetilde{\theta}_{1x}(s)\|_{L^{2}(\Omega)}^{2} + \frac{1}{2} \|\widetilde{\theta}_{2x}(s)\|_{L^{2}(\Omega)}^{2} \leq \frac{1}{2} \|\widetilde{\theta}_{1x}(s)\|_{L^{2}(\Omega)}^{2} + \frac{1}{2} \|\widetilde{\theta}_{2x}(s)\|_{L^{2}(\Omega)}^{2} + \frac{1}{2} \|\widetilde{\theta}_{2x}($$

$$\leq \sqrt{s} L_{21}(r) \|\theta_2\|_{L^2(Q_s)} \|\theta_1\|_{L^2(Q_s)} + \sqrt{s} L_{22}(r) \|\theta_2\|_{L^2(Q_s)} \|\theta_1\|_{L^2(Q_s)}.$$

или

$$\left(1 - \frac{\sqrt{s}L_{21}(r)}{2} - \frac{\sqrt{s}L_{22}(r)}{2}\right) \left(\left\|\theta_{1}\right\|_{L^{2}(Q_{s})}^{2} + \left\|\theta_{2}\right\|_{L^{2}(Q_{s})}^{2}\right) \leq 0.$$
(20)

Пусть

$$1 - \frac{\sqrt{s}L_{21}(r)}{2} - \frac{\sqrt{s}L_{22}(r)}{2} > 0$$
 или $s < \min\left\{T; \frac{4}{\left(L_{21} + L_{22}\right)^2}\right\}.$

Тогда полагая $\hat{T}=\min \left\{T; \frac{4}{\left(L_{21}+L_{22}\right)^2}\right\}$, из (20) получаем, что $\theta_1=0, \theta_2=0$ п.в.

в $Q_{\hat{T}}$. Можно повторить эту процедуру на интервалах времени $\left[\hat{T},2\hat{T}\right],\left[2\hat{T},3\hat{T}\right]$ и т.д.; отсюда получаем единственность решения в $\left[0,T\right]$.

Теорема 2 доказана.

Список литературы

- 1. Visintin A. (1993) Hysteresis and semigroups, in "Models of Hysteresis"// A.Visintin, ed. Longman, Harlow. P.192-206.
- 2. M.Hilpert M. (1989) On uniqueness for evolution problems with hysteresis // In: Mathematical Models for Phase Change Problems. Birkhauser, Basel. P. 377-388.
- 3. Aliev A.B., Isayeva S.E. (2015) A qlobal attractor for one semilinear hyperbolic equation with memory operator, Pleiades Publishing Ltd, Computational Mathematics and Mathematical Physics. vol 55. №11.
- 4. Krejci P. (1986) Hysterezis and periodic solutions of semilinear and quasilinear wave equations// Math.Z. 193. P. 247-264.
- 5. Krejci P. (1993) Asymptotic stability of periodic solutions to the wave equation with hysteresis// In: Models of hysteresis (A.Visintin, ed.). Longman, Harlow. P. 77-90.
- 6. Visintin A. (1993) Differential Models of Hysteresis. Springer. 411 p.
- 7. Лионс Ж.Л. Некоторые методы решения нелинейных краевых задач. М.: Мир, 1972.

THE INITIAL-BOUNDARY VALUE PROBLEM FOR ONE SYSTEM OF SEMILINEAR HYPERBOLIC EQUATIONS WITH MEMORY OPERATOR

S.E. Isayeva

Baku State University

Cand. Sci. (Phys.–Math.), associate professor isayevasevda@rambler.ru
Baku

Summary. In this work we consider the initial-boundary value problem for one system of semilinear hyperbolic equations with memory operators. We prove the existence and uniqueness of solutions for this problem.

Keywords. Semilinear hyperbolic equation, hysteresis, memory operator, time discretization method.

References

- 1. Visintin A. (1993) Hysteresis and semigroups, in "Models of Hysteresis"// A.Visintin, ed. Longman, Harlow. P.192-206.
- 2. M.Hilpert M. (1989) On uniqueness for evolution problems with hysteresis // In: Mathematical Models for Phase Change Problems. Birkhauser, Basel. P. 377-388.
- 3. Aliev A.B., Isayeva S.E. (2015) A qlobal attractor for one semilinear hyperbolic equation with memory operator, Pleiades Publishing Ltd, Computational Mathematics and Mathematical Physics. vol 55. №11.
- 4. Krejci P. (1986) Hysterezis and periodic solutions of semilinear and quasilinear wave equations// Math.Z. 193. P. 247-264.
- 5. Krejci P. (1993) Asymptotic stability of periodic solutions to the wave equation with hysteresis// In: Models of hysteresis (A.Visintin, ed.). Longman, Harlow. P. 77-90.
- 6. Visintin A. (1993) Differential Models of Hysteresis. Springer. 411 p.
- 7. Leeons Z.L. (1972) Nekotory`e metody` resheniia nelinei`ny`kh kraevy`kh zadach [Some methods for solving nonlinear boundary value problems] M.: Mir, 1972.

УДК 004.9 ИНТЕРАКТИВНЫЙ МОТИВАТОР ИЗУЧЕНИЯ ПРЕДМЕТА «ФЭМУЛАС»

Светлана Юрьевна Петрова

к.т.н., доцент svetlana.petrova@novsu.ru г. Великий Новгород

Новгородский государственный университет им. Ярослава Мудрого

Аннотация. В статье рассматривается вопрос использования информационной технологии Фэмулас в образовании. Современная система образования сталкивается с проблемами совершенствования технологий самостоятельной работы студентов и организации инклюзивного образования инвалидов, особенно если студент слабо мотивирован в обучении. Выяснилось, что большинство студентов не в состоянии определить ценность публикации и самостоятельно найти нужные знания по проблемному предмету. Таким образом была поставлена задача разработки интерактивного мотиватора, позволяющего максимально упростить подборку актуальной, интересной и качественной информации по изучаемому предмету. Сбор данных для мотиватора осуществляет бот, основная функция которого направлена на обнаружение событий взаимодействия эксперта в, изучаемой студеном предметной области с цифровыми образовательными ресурсами портала НовГУ и Интернет. Полученные данные анализируются с помощью технологического решения Фэмулас, формирующего глобальную историю причинно-следственных связей взаимодействия эксперта с цифровыми образовательными ресурсами и определения важности страницы. Во время фазы спецификации причинно-следственных связей переход пользователя по цифровым ресурсам мы рассматриваем как конечный автомат и определяем действия, которые вызывают переходы от одного цифрового ресурса к другому. Причинно-следственная связь локальных событий может быть получена из истории процесса. Два события в глобальной истории могут быть связаны. Если это так, ни одно из них не является причиной другого, следовательно, можно сказать, что такие события – это параллельные события. Полученные истории проходят процедуру обработки больших данных на вычислительном кластере Hadoop в НовГУ. Результатом обработки будет список ссылок на http страницы с актуальными, интересными и качественными публикациями по изучаемому предмету.